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We study in experiment and with computer simulation the free energy and the kinetics of vacancy and
interstitial defects in two-dimensional dipolar crystals. The defects appear in different local topologies, which we
characterize by their point group symmetry; Cn is the n-fold cyclic group and Dn is the dihedral group, including
reflections. The frequency of different local topologies is not determined by their almost degenerate energies but
is dominated by entropy for symmetric configurations. The kinetics of the defects is fully reproduced by a master
equation in a multistate Markov model. In this model, the system is described by the state of the defect and the
time evolution is given by transitions occurring with particular rates. These transition rate constants are extracted
from experiments and simulations using an optimization procedure. The good agreement between experiment,
simulation, and master equation thus provides evidence for the accuracy of the model.
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I. INTRODUCTION

The microscopic dynamics and interaction of defects,
such as dislocations, vacancies, and interstitials, are key to
a variety of macroscopic phenomena of materials [1,2]. In
two-dimensional (2D) systems [3–7], the peculiar two-step
melting is a result of dislocation and disclination interactions,
and melting is mediated by the formation and subsequent
dissociation of dislocation pairs [8–15]. Dislocations pairs in
2D crystals also form as the result of spontaneous clustering
of interstitials and vacancies introduced into the systems [16].
The dynamics and interaction of interstitials and vacancies is
even related to exotic phases such as supersolidity [17,18].
Nevertheless, even though individual defects and their dis-
placement fields are well described by elasticity theory, the
precise kinetics and the sign of the interaction cannot be
captured by the theory [19,20]. The open question is how
the defect kinetics emerges from the nonlinear effects near
the defect centers. Video microscopy of two-dimensional
colloidal crystals together with optical tweezers now allow
us to investigate such nonlinear effects with single-particle
resolution in real time [21–25].

Here, we show that the dynamics of defects in two-
dimensional dipolar crystals can be fully described by a
sequence of jumps between states that are defined by the
local displacements in the vicinity of the defect centers. The
equilibrium probabilities of the states (i.e., the populations)
are a result of the interplay between entropic and energetic
contributions. We find that the different contributions can
be understood quantitatively from statistical mechanics by
a harmonic expansion of the energy around the minima
corresponding to the various defect states. The kinetics
of the defects follows a master equation for which we measure
the transition matrix from a long experimental trajectory
with the aid of an optimization routine. The results from
experiments are compared with the results from Monte Carlo
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simulations. The equilibrium probabilities from simulation
and experiment are in qualitatively good agreement but show
systematic differences for stiff crystals.

II. EXPERIMENTAL SETUP AND MODEL

We consider a system of superparamagnetic colloidal
particles (4.5 μm in diameter) confined by gravity to two
dimensions on a flat interface. Two situations were realized,
namely a flat water/air interface in hanging droplet geometry
and a solid interface of a glass substrate. The only difference
in both realizations is a slightly enhanced self-diffusion
coefficient of colloidal particles at the water/air interface at
the expense of an increased equilibration time after mounting
the sample compared to the solid substrate. The latter is due to a
nontrivial regulation of the curvature of the droplet [26]. Video
microscopy and digital image analysis provide the position
of the particles at a frame rate of about 1 Hz, which is fast
compared to the Brownian time scale of 50 s. The colloidal
ensemble is described by the Hamiltonian

H =
∑

i

p2
i

2m
+

∑
i<j

V (rij ), (1)

with the pair interaction for particles at distance r ,

βV (r) = 33/4�

(2π )3/2

(
a

r

)3

. (2)

Here, β = 1/kBT with the Boltzmann constant kB and
temperature T . The distance is given in units of a, the average
interparticle distance of the triangular lattice. The dimen-
sionless parameter � = β(μ0/4π )(χH )2(πρ)3/2 defines the
phase behavior of the system and can be interpreted as an
inverse temperature, tuned with the magnetic field H . Here, μ0

is the permeability of vacuum, χ is the magnetic susceptibility
of the particles, and ρ is the 2D particle density. The
experimental setup is described in detail in Refs. [16,24,26].
On the solid substrate, a vacancy is prepared by trapping
a colloid with an optical tweezer (20 mW, 100× tweezer
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objective from above the sample, NA 0.73, Ar+-laser) and
pulling it alongside a lattice line out of the field of view
(at least more than 15 lattice spacings). Correspondingly,
an interstitial is created by pulling a particle from the far
field into the center of the field of view of an otherwise
defect-free crystal. Samples confined at the water/air interface
offer additionally the possibility to shoot particles out of the
interface by light pressure with a strong laser pulse (500 mW).
Since the sound velocity is of the order of a few mm/s, the
distorted lattice relaxes rapidly and measurements are started
after about a minute. Positional data were taken at three
different interactions strength, � = 120,140,156, with more
than 3000 configurations in the case of � = 120 and 156 and
more than 20 000 configurations in the case of � = 140 for
both interstitials and vacancies. For � = 140, the creation of
the defect was repeated frequently, annealing the crystal and
equilibrating the systems in between for several days up to a
few weeks.

III. DEFECT CLASSIFICATION AND PATTERNS

In equilibrium, the vacancies and interstitials exist in differ-
ent, almost degenerate states with different topologies [27,28].
The most frequently appearing vacancy and interstitial states
are shown in Fig. 1, and we classify the defects according to
their point groups in two dimensions. Cn denotes the cyclic
group with n-fold rotational symmetry, whereas Dn is the
dihedral group with additionally n mirror axes. The upper
left index denotes vacancies or interstitials, and the upper
right index counts the number of dislocations involved in the
defect. In two dimensions, a dislocation is a pair of fivefold-
(colored orange in Fig. 1) and sevenfold- (colored green)
coordinated particles characterized by a Burgers vector. The
neighbor numbers in the vicinity of the defect centers are
determined using a Voronoi construction [29]. The dissociation

TABLE I. Classification of interstitial (I ) and vacancy (V ) states
based on the number of particles with four, five, seven, and eight
neighbors in the vicinity of the defect.

Defect i no. 4 no. 5 no. 7 no. 8

ID 0
2 1 1 0 2 0

ID 2
2 2 0 2 2 0

ID 3
3 3 0 3 3 0

ID 4
2 4 0 4 4 0

VD 0
2 1 0 2 0 1

VC 2
2 / VD2

2 2 0 2 2 0
VD 3

3 3 0 3 3 0
VD 4

2 4 0 4 4 0

of dislocations is known to drive the melting transition in two
dimensions [8]. The most frequent defect configurations are
listed in Table I and the index i is introduced to label the defects
in the formula below and for the computations of transition
rates. Configurations with larger numbers of dislocations exist
and are numbered with others (i = 0). Note that the number
of such defects vanishes for large � (see the dotted lines in
Fig. 10).

Interestingly, the typical symmetry of the configuration
consisting of two dislocations (second column in Fig. 1) is not
the same for interstitials and vacancies. To quantify the relative
probability of dihedral and cyclic configurations, we introduce
the following procedure. We connect the fivefold particles with
a line and the sevenfold ones too, and we measure the angle
α between the two axis. For α = π/2 ± π/8, the pattern is
classified as rhombic (D2 symmetry) and otherwise classified
as cyclic (C2 symmetry). Figure 2 shows the probability
density as a heat map for vacancies (a) and interstitials (b). Red

DI 2
2

DV
3
3

DI 3
3 DI 2

4DI 2
0

DV
2
0 DV

2
4CV 2

2

FIG. 1. (Color online) Typical snapshots of the colloidal crystal obtained from the experiment containing an interstitial (upper row) and
a vacancy (lower row), respectively. The motion of the defects consists of a sequence of transitions between states with different symmetries
given by the dihedral Dn and cyclic Cn point groups in two dimensions. The upper left index denotes interstitial vs vacancies and the upper
right counts the numbers of sevenfold particles (in the case of interstitials) and fivefold particles (in the case of vacancies). Particles with
four, five, seven, and eight neighbors are shown in blue (gray), orange (light gray), green (medium gray), and purple (dark), respectively, and
particles with six neighbors are shown in black (small dots). Note that the symmetry of the most frequent low-temperature configurations
(second column) differ for interstitials and vacancies. The vacancies show only cyclic symmetry for low temperatures.
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FIG. 2. (Color online) Probability density of the angle α between the 5-5 and 7-7 bonds for vacancies (left) and interstitials (right) consisting
of two dislocations for different values of �. Red (dark) indicates high probabilities. For α = π/2 the symmetry is dihedral, D2. The vacancies
are peaked at α ≈ 90◦ ± 38◦ for low temperatures (large �) with cyclic symmetry C2.

corresponds to large probabilities and green to low ones. For
� � 120, the distribution is sharply peaked at about α ≈ π/2
for the vacancies, and the probability of the D2 symmetry
tends to zero. The ratio for D2 symmetry increases to 30%
at � = 80. Having this in mind, we keep the notation VC2

2
for vacancies consisting of two dislocations in the following
plots for clarity. For interstitials [Fig. 2(b)] the distribution
is peaked at α ≈ π/2 corresponding to dihedral symmetry
D2 for all interaction strength. Nonetheless, the distribution
widens for lower temperatures, which might indicate a separate
configuration C2. Using the same cutoff as for vacancies, the
ratio varies form 50%:50% at � = 80 to 75% ID2 and 25%
IC2 at � = 170.

To visualize the configurations with respect to the underly-
ing lattice of the crystal, Figs. 3 and 4 show the probabilities
of positions of particles with respect to the defect centers. All
patterns reflect the symmetry of the crystal, but the relative
positions of particles with four, five, and seven neighbors for
the interstitials are arranged in particular patterns shown in
Fig. 3, and the five-, six-, and eight-neighbored particles of
the vacancies are shown in Fig. 4. Remarkably, the positions
of the fivefold-coordinated particles in an interstitial defect
and the positions of sevenfold-coordinated particles are all
degenerate within the 12 points in a starlike pattern.

IV. EQUILIBRIUM DEFECT POPULATIONS

Following a trajectory x(t) of the system in experiment, one
can use the classification above to identify a trajectory of states.
Here, x(t) denotes the configuration of the system, including
the positions of all particles, at time t . In computer simulations,
x(t) is the sequence of Monte Carlo configurations. For illus-
tration, a typical trajectory taken from computer simulations
is depicted in Fig. 5. From the trajectory, we determine the
probability Pi of finding the defect in state i with

Pi = 〈hi[x(t)]〉 = lim
τ→∞

1

τ

∫ τ

0
dt ′hi[x(t ′)]. (3)

The indicator function hi(x) is defined as

hi(x) =
{

1 if x is in state i,

0 otherwise. (4)

The probabilities are normalized to
∑

i Pi = 1 for vacancies
and interstitials separately. The population Pi equals the
fraction of time the defect spends in state i in equilibrium. This
probability is estimated from a finite number of configurations,

Pm = h̄ = 1

N

N∑
i=1

hm[x(i	t)]. (5)

The configurations are sampled in experiment and simulation
at constant time intervals. These configurations may therefore
be correlated, and the error from this estimation, including
correlated events, is

σ 2 = 〈(h̄ − 〈h〉)2〉 = 1

N2

∑
ij

〈δh(i)δh(j )〉, (6)

where 〈h〉 is the ensemble average of h, and
δh(i) = h[x(i	t)] − 〈h〉. The correlation function
〈δh(i)δh(j )〉 can be rewritten as

H (|i − j |) = 〈δh(i)δh(j )〉 = 〈h(i)h(j )〉 − 〈h〉2

= Cm,m(	ti−j ) − 〈h〉2. (7)

Here, Cm,m are the autocorrelation functions as depicted in
Figs. 6–9. Note that in equilibrium, H (i − j ) = H (|i − j |)
and H (0) = 〈h〉(1 − 〈h〉). Inserting Eq. (7) into Eq. (6) with
t = |i − j |, we find

σ 2 = 1

N

(
2

N−1∑
t=0

H (t) − H (0)

)
− 2

N2

N−1∑
t=1

tH (t). (8)

In the limit of large N , the last term, which scales quadratically,
and the constant term H (0) can be neglected, and the error can
be estimated from

σ 2 ≈ 2

N
H (0)

N−1∑
t=0

H (t)

H (0)
= 〈h〉(1 − 〈h〉)

N

N−1∑
t=0

H (t)

H (0)
. (9)

Note that the term 〈h〉(1−〈h〉)
N

= σ 2
0 is the error from N

uncorrelated measurements. In a general trajectory, correla-
tions increase the error by 2

∑N−1
t=0

H (t)
H (0) . This factor can be
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FIG. 3. (Color online) Relative positions of fourfold-, fivefold-, and sevenfold-coordinated particles in the vicinity of an interstitial defect
with respect to the defect position on the underlying triangular lattice from computer simulations. The configurations (left column) ID0

2 (a),
ID2

2 (b), and ID3
3 (c) consist of at least two fivefold-coordinated particles [green (medium gray)]. The ID0

2 state consists of an additional
fourfold-coordinated particle [yellow (light)] while the ID2

2 and ID3
3 states consist of additional sevenfold-coordinated particles [orange (light

gray)]. The relative positions of fivefold-coordinated (middle column) and fourfold- and sevenfold-coordinated particles (right column) are
measured with respect to the closest lattice point of the defect center and depicted as a heat map. Red indicates large probability and white low
probabilities. Clearly, the fivefold-coordinated particles always occupy the same 12 lattice points with different weights depending on the state.
The fivefold- and sevenfold-coordinated particles also follow different patterns.

associated with the correlation time tc in the system by

N−1∑
t=0

H (t)

H (0)
≈ 1

	t

1

H (0)

∫ ∞

0
H (t)dt = tc

	t
. (10)

Here, the correlation time is tc = 1
H (0)

∫ ∞
0 H (t)dt and 	t is the

sampling interval. Combining all this, the error from correlated
trajectories can be written as the uncorrelated error multiplied
by the correlation time,

σ 2 = σ 2
0

2tc

	t
. (11)

In the experiments, the trajectory is sampled every 	t=0.92 s.
The number of measurements differs considerably for the
various � for vacancy and interstitials. In particular, for inter-

stitials NI
�=120 = 670 and NI

�=140 = 31 500 and for vacancies
NV

�=120 = 4950, NV
�=140 = 23 700, and NV

�=156 = 9900. The
correlation time for different species ranges from tc = 20 to 40.

In the computer simulations, the trajectory is a sequence
taken from Monte Carlo updates. The number of particles is
Np = 26 × 30 + 1 = 781 for interstitials and Np = 779 for
vacancies. Interactions are cut off at a radius rc = 8a0, where
a0 is the lattice spacing. The displacement in each Monte
Carlo step is chosen such that the average acceptance rate
is approximately 0.5. Sequences are sampled every 800 000
Monte Carlo steps, which corresponds to approximately 1 s in
real time. For all parameters, the total number of measurements
is N = 750 000.

Populations of interstitial and vacancy states obtained from
computer simulations for � ranging from � = 100 to 170
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FIG. 4. (Color online) Relative positions of fivefold-, sevenfold-, and eightfold-coordinated particles in the vicinity of a vacancy defect
with respect to the defect position on the underlying triangular lattice from computer simulations as described in the caption of Fig. 3. A vacancy
in state VD0

2 (a), VC2
2 (b), or VD3

3 (c) consists of at least two sevenfold-coordinated particles (orange) and either a single eightfold-coordinated
(violet) particle (a) or additional fivefold-coordinated particles (green) (b) and (c). In all states, the sevenfold-coordinated particles are found
at the same 12 positions (right) while the eightfold- and fivefold-coordinated particles are found at various other positions.

are shown in Fig. 10. The defect populations determined
experimentally for interstitials and vacancies at � = 120, 140,
and 156 are in good agreement. For the vacancies, the
small overpopulation for � < 140 of VC2

2 -type with the
lowest symmetry (red squares) is attributed to a tiny shear
within the sample since vacancies were mainly created at the
water/air interface. This interface is less stable compared to
the solid substrate, but vacancies can be created with fewer
perturbations by pushing particles out of the interface using
the light pressure of the laser pulse.

V. FREE ENERGY OF DEFECT STATES

The probability of finding the defect in state i is related to
the free energy of the state, which consists of an energy and
an entropy contribution. For convenience, we introduce the
reduced energy W (x) = 33/4

2π3/2

∑
i<j (a/rij )3, which is related to

the potential energy V (x) by βV (x) = �W (x). The probability
density in configuration space for a given temperature and
volume is given by

ρ(x) = Z−1e−�W (x) (12)

with the partition function Z = ∫
e−�W (x) dx. The probability

of finding the defect in state i can then be written as an
ensemble average,

Pi =
∫

e−�W (x)hi(x) dx∫
e−�W (x) dx

= Zi

Z
= e−�	Fi , (13)

where Zi = ∫
e−�W (x)hi(x) dx is the partition function re-

stricted to state i. Thus, 	Fi = Fi − F is the difference
between the free energy Fi = −�−1 ln Zi of configuration i

and the free energy F = −�−1 ln Z of the system. According
to basic statistical mechanics, the free energy Fi is the sum of
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t
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FIG. 5. Typical trajectory of the state as a function of time (in
units of Monte Carlo time steps) of an interstitial at � = 160. The
state is identified in each time step from the neighbor numbers of
particles in the vicinity of the defect according to Table I.

an energetic and an entropic contribution,

Fi = 〈W 〉i − Si

�
. (14)

Here, 〈W 〉i is the average energy given that the system is in
state i, and Si is the entropy of state i.

For sufficiently large values of �, at which configurations
belonging to state i can be viewed as small fluctuations about
a local energy minimum, the energetic and entropic contribu-
tions to the free energy can be computed analytically. In this
regime, the energy of each state i is approximated as quadratic
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FIG. 6. (Color online) Time correlation functions Cij (t) for in-
terstitials obtained from experiment (solid lines) in comparison to the
result of the optimization procedure of Kij (dashed) for � = 140.
The symbols in the top right corner of each panel indicate the initial
state j and colors indicate the final state i, where black corresponds
to ID0

2 , red to ID2
2 , green to ID3

3 , and blue to VI 4
2 . For instance, the

black lines in the top left panel represent the probability to find the
defect in the ID0

2 configuration at time t given that it was in ID0
2 at

time t = 0, while the red lines represent the probability to find it in
ID2

2 at time t .
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FIG. 7. (Color online) Correlation functions Cij (t) for intersti-
tials obtained from simulation (solid lines) and from the optimization
procedure of Kij (dashed). Parameters and colors as in Fig. 6.

function centered at the minimum energy configuration x0
i ,

Wi(x) = W
(
x0

i

) + 1
2 uiDiui , (15)

where ui = x − x0 is the displacement from the minimum
and Di is the matrix of second derivatives of W evaluated
at x0

i . The partition function of state i is then given by

Zi = e−�W (x0
i )
√

(2π)n

�ndetDi
, where n is the number of degrees of

freedom. From this expression, it follows that the free-energy
difference 	Fkl = Fk − Fl between two states k and l, which
determines the relative population Pk/Pl , can be expressed as

	Fkl = − 1

�
ln

Pk

Pl

= W
(
x0

k

) − W
(
x0

l

) − 1

�

1

2
ln

detDk

detDl

= 	Wkl − 1

�
	Skl. (16)
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FIG. 8. (Color online) Correlation functions Cij (t) for vacancies
obtained from experiment (solid line) and from the optimization
procedure of Kij (dashed). Parameters and colors as in Fig. 6.
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FIG. 9. (Color online) Correlation functions Cij (t) for vacancies
obtained from simulation (solid line) and from the optimization
procedure of Kij (dashed). Parameters and colors as in Fig. 6.
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The dotted line denotes the probability to find the defect in a
state not given in the table that is negligible for higher interaction
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linear fits to the data obtained from computer simulations. According
to Eq. (16), the intercepts of these functions corresponds to energy
differences 	Wkl shown in panel (c) for interstitials (black squares)
and vacancies (red circles). The energies are given with respect to
the lowest energy state, which is VC2

2 and ID3
3 for vacancies and

interstitials, respectively. The slopes of the lines in panels (a) and (b)
yield the entropy differences 	Skl shown in panel (d) for interstitials
(black) and vacancies (red).

Thus, the free-energy difference 	Fkl = Fk − Fl depends
linearly on 1/�. The intercept of this function with the y axis
then yields the energy difference 	Wkl = W (x0

k) − Wl(x0
l )

between states k and l, and the slope equals the entropy
difference 	Skl . As shown in Fig. 11, this linear behavior
is indeed observed in our simulations. Figure 11 also shows
the energy and entropy differences obtained by linear fits of
Eq. (16) to the simulation results. As can be inferred from the
figure, the symmetric defect configurations VD0

2 and ID0
2 have

a positive entropy with respect to the respective lowest-energy
states, leading to a negative slope of the free energy versus 1/�

curves shown as black lines in Figs. 11(a) and 11(b). Note that
while the energy difference between states is small for all
�, the entropy versus energy ratio may change dramatically
as a function of �. This positive entropy difference for the
symmetric defect configurations causes an inversion of the
population order for lower values of �.

VI. DEFECT KINETICS

On a coarse level, neglecting microscopic details, the
motion of a defect can be viewed as a sequence of transitions
between discrete states. This type of dynamics can be mapped
onto a Markov state model governed by the master equation

dPi(t)

dt
=

∑
j 	=i

[KijPj (t) − KjiPi(t)]. (17)

Here, Pi(t) is the probability of finding the defect in state i at
time t , and Kij is the rate constant for transitions from state j

to state i. The general solution of the master equation can be
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TABLE II. Rate constant matrix Kij for � = 140 obtained from experiment and simulation using the optimization of Eq. (25).

Experiment − Interstitials (×102) Experiment −Vacancies (×102)

−1.5014 0.0000 0.2827 0.4473 0.7714 −1.4511 0.1469 1.0814 0.2227 0.0000
0.0040 −2.1958 2.1918 0.0000 0.0000 0.0694 −0.9595 0.5917 0.2984 0.0000
0.0218 0.5257 −0.8295 0.2820 0.0000 0.1820 0.1521 −0.3341 0.0000 0.0000
0.1171 0.0000 0.2219 −0.4665 0.1275 0.0509 0.2643 0.0000 −0.5841 0.2689
0.3825 0.0000 0.0000 0.4346 −0.8172 0.0000 0.0000 0.0000 1.0602 −1.0603

Simulation − Interstitials (×102) Simulation −Vacancies (×102)

−2.0873 0.0000 0.5688 0.5834 0.9351 −1.7116 0.2209 0.9771 0.2794 0.2342
0.1637 −1.9832 1.6178 0.2016 0.0000 0.0000 −0.4375 0.2625 0.1734 0.0015
0.0231 0.1631 −0.3263 0.1401 0.0000 0.0874 0.0812 −0.1686 0.0000 0.0000
0.0578 0.0000 0.1093 −0.3682 0.2012 0.0000 0.1483 0.0000 −0.3230 0.1747
0.2939 0.0000 0.0543 0.4219 −0.7701 0.1621 0.0000 0.3248 0.7269 −1.2137

written in matrix and vector notation as

P(t) = exp[Kt]P(0). (18)

Here, P(t) is the vector of probabilities Pi at time t , and K is the
matrix of transition rate constants Kij . While for short times
P(t) depends on the initial conditions P(0), for long times
P(t) converges to the vector Peq of equilibrium populations
independent of time and initial conditions,

Peq = lim
t→∞ exp[Kt]P(0). (19)

For the matrix of rate constants, the condition of detailed
balance holds with respect to the equilibrium distribution Peq,

P
eq
i

P
eq
j

= Kji

Kij

. (20)

In addition, the conservation of total probability requires

Kii = −
∑
j 	=i

Kji . (21)

The transition rate constants Kij can be calculated from a tra-
jectory of states with the following procedure. To characterize
the time evolution of the system, we introduce the correlation
functions

Cij (t) = P (i,t |j,0) = 〈hi[x(t)]hj x(0)]〉
〈hj [x(0)]〉 . (22)

The correlation function Cij (t) is the conditional probability
of finding the defect in state i at time t , given that it was in
state j at time t ′ = 0. The equilibrium probability P

eq
i of state

i is the large time limit of P (i,t |j,0),

P
eq
i = lim

t→∞ P (i,t |j,0). (23)

To obtain this equation, we have used the fact that for
long times the state of the system at time t is statistically
independent of the state at time t = 0, i.e., 〈hi(t)hj (0)〉 =
〈hi(t)〉〈hj (0)〉. The correlation functions Cij (t) can be easily
determined from trajectories obtained in experiments or
simulations. This correlation function is then compared to the
result of the master equation given the matrix of rate constants
Kij with

Ĉij (t) = (
exp[Kt]Pinit

j

)
i
. (24)

Here, the initial vector Pinit
j has a 1 in component j while all

other components have a value of 0. This particular choice of
initial condition implies that the system is initially in state
j with probability 1 as required by the definition of the
conditions probability Cij .

To determine the matrix of rate constants Kij governing the
dynamics of defects, we carry out an optimization procedure
that minimizes the difference between the time correlation
functions measured in experiments or simulations and those
predicted from the solution of the master equation (see
Table II). The target function of this optimization is defined as

E(K) =
∑
i,j

∑
l

[Ĉij (l	t) − Cij (l	t,K)]2. (25)

Here, Cij (	t) denotes the matrix of correlation functions
determined from experiment or simulation. The argument K
in the target function E(K) and in the matrix of predicted
correlation functions Ĉij (	t,K) emphasizes their dependence
on the matrix of rate constants. The matrix of rate constants
is optimized to best reproduce the observed time correlation
functions. In this optimization procedure, the target function of
Eq. (25) is then minimized iteratively. In each step of the itera-
tion, a matrix element Kij is chosen at random and changed by
adding a random amount 	k. To satisfy the constraint Eq. (21),
	k is also subtracted from matrix element Kii . The step is
accepted if the target function has decreased. The iteration is
stopped when the target function has not decreased for a certain
number of steps. The optimization procedure is initialized
with the time derivatives of the time correlation functions
Cij (t) evaluated at t = 0, with KTST

ij = dCij (t)/dt |t=0. These
initial transition rate constants correspond to the transition state
theory estimates obtained for the dividing surfaces defined
implicitly by the state classification introduced earlier. In the
transition state theory approximation, correlated crossings of
the dividing surface are neglected. Note that the optimization
procedure described above takes these transient short-time
correlations correctly into account.

Transition rate constants obtained with this optimization
procedure for vacancies and interstitials are summarized in
Fig. 12. The results from computer simulations and exper-
iments are in very good agreement. The results show that
the transition rates are not homogeneous. The most dominant
transitions are ID0

2 → ID2
2 for interstitials and VD4

2 → VD3
3 for
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FIG. 12. (Color online) Color-coded optimized rate matrix Kij

for an interstitial (a) and (c) and a vacancy (b) and (d) from a trajectory
from experiment (top) and simulation (bottom) at � = 140.

vacancies. We also identify several transitions with a vanishing
rate (e.g., ID4

2 → ID0
2 or VD4

2 → VC2
2 ). We plan to investigate

the exact microscopic mechanism for these rare transitions in
the future.

In summary, we have shown that geometrical defects
such as interstitials and vacancies appear as different
topological configurations mainly constructed of two, three,
or four dislocations where the Burgers vector cancels. We

characterize the configurations by the symmetry of 2D
point groups and show that the symmetries for interstitials
and vacancies are not equivalent. The relative equilibrium
probabilities of defects vary as a function of the temperature.
In the low-temperature limit, the probabilities of ID2

2 and ID3
3

symmetries are largest for interstitials, while vacancies are
predominantly in the VC2

2 symmetry. This completely different
temperature dependence of vacancies and interstitials is not
dominated by their energy, which is almost degenerated, but
by the entropy. The entropic and energetic contributions can
be accurately determined from a second-order expansion of
the energy with respect to displacements.

The kinetics of the defects is well described by a master
equation in a multistate Markov model. The states are different
symmetries of the defects, and the rates between different
states are determined from time correlation functions, which
we measure in experiment and computer simulations.

This work presents a detailed study on the defect en-
ergetics and dynamics of point defects in two-dimensional
materials. We hope that this motivates experiments in other
two-dimensional systems. A particular future question that be-
comes accessible, e.g., in ultracold dipolar quantum gases [30]
and graphene [31], is the role of quantum fluctuations in defect
dynamics.
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